### metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Bis{2,4-dibromo-6-[3-(cyclohexylammonio)propyliminomethyl]phenolato- $\kappa^2 N, O$ }bis(thiocyanato- $\kappa N$ )nickel(II) methanol disolvate

# Min Liu,<sup>a</sup> Wen-Bing Yuan,<sup>a</sup>\* Hong-Wu Xu,<sup>b</sup> Qi Zhang<sup>a</sup> and Jin-Xia Li<sup>b</sup>

<sup>a</sup>Hainan Provincial Key Laboratory of Fine Chemicals, Hainan University, Hainan 570228, People's Republic of China, and <sup>b</sup>Department of Materials and Chemical Engineering, ZhongYuan University of Technology, Zhengzhou Henan 450007, People's Republic of China

Correspondence e-mail: fjyuanwb@163.com

Received 10 August 2007; accepted 13 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.045; wR factor = 0.107; data-to-parameter ratio = 18.5.

The title centrosymmetric Schiff base nickel(II) complex, [Ni(NCS)<sub>2</sub>( $C_{16}H_{22}Br_2N_2O$ )<sub>2</sub>]·2CH<sub>3</sub>OH, consists of a mononuclear complex molecule and two solvent methanol molecules. The Ni<sup>II</sup> atom lies on an inversion centre and is sixcoordinated by the imine N and phenolate O atoms of the two Schiff base ligands and by the N atoms of two thiocyanate ligands, in an octahedral coordination geometry. The cyclohexyl rings adopt chair conformations.

#### **Related literature**

For related structures, see: Diao (2007); Yuan & Zhang (2005); Yuan *et al.* (2007); Li *et al.* (2007); Li & Wang (2007).



#### Experimental

#### Crystal data

a

С

| $Ni(NCS)_2(C_{16}H_{22}Br_2N_2O)_2]$ | $\beta = 104.21 \ (3)^{\circ}$  |
|--------------------------------------|---------------------------------|
| 2CH <sub>4</sub> O                   | $\gamma = 100.80 \ (3)^{\circ}$ |
| $A_r = 1075.31$                      | V = 1101.8 (4) Å <sup>3</sup>   |
| Triclinic, $P\overline{1}$           | Z = 1                           |
| = 9.3410 (19) Å                      | Mo $K\alpha$ radiation          |
| = 10.957 (2)  Å                      | $\mu = 4.21 \text{ mm}^{-1}$    |
| = 12.210 (2) Å                       | T = 298 (2) K                   |
| $t = 108.28 (3)^{\circ}$             | $0.27 \times 0.23 \times 0.22$  |

#### Data collection

```
Bruker SMART 1000 CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.397, T_{max} = 0.458
(expected range = 0.343–0.396)
```

#### Refinement

ł

5 4

| $R[F^2 > 2\sigma(F^2)] = 0.045$ | 243 parameters                                            |
|---------------------------------|-----------------------------------------------------------|
| $VR(F^2) = 0.107$               | H-atom parameters constrained                             |
| = 1.01                          | $\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 504 reflections                 | $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$  |

mm

8978 measured reflections 4504 independent reflections

 $R_{\rm int} = 0.033$ 

2992 reflections with  $I > 2\sigma(I)$ 

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of Hainan Province (grant No. 20602) and the Open Fund (grant No. hnfc2006005) of Hainan Provincial Key Laboratory of Fine Chemicals for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2329).

#### References

- Bruker (1998). *SMART* (Version 5.628) and *SAINT* (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.
- Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.
- Li, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m749-m750.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Yuan, W.-B., Xu, H.-W., Li, J.-X., Liu, M. & Zhang, Q. (2007). Acta Cryst. E63, m1702.
- Yuan, W.-B. & Zhang, Q. (2005). Acta Cryst. E61, m1883-m1884.

Acta Cryst. (2007). E63, m2376 [doi:10.1107/S1600536807040238]

# Bis{2,4-dibromo-6-[3-(cyclohexylammonio)propyliminomethyl]phenolato- $\kappa^2 N,O$ }bis(thiocyanato- $\kappa N$ )nickel(II) methanol disolvate

#### M. Liu, W.-B. Yuan, H.-W. Xu, Q. Zhang and J.-X. Li

#### Comment

Recently, we have reported the structures of a few Schiff base copper(II) and zinc(II) complexes (Yuan & Zhang, 2005; Yuan *et al.*, 2007). As an extension of our investigations in this area we report herein the title new mononuclear Schiff base nickel(II) complex.

The complex consists of a mononuclear complex molecule and two lattice methanol molecules (Fig. 1). The Ni<sup>II</sup> atom, lying on the inversion centre, is six-coordinated by two imine N and two phenolic O atoms from two Schiff base ligands and by two N atoms from two thiocyanate ligands, in octahedral coordination. The bond lengths and angles to the Ni(II) atom are comparable to the values in other similar complexes (Diao, 2007; Li *et al.*, 2007; Li & Wang, 2007). The cyclohexyl rings adopt chair conformations.

#### Experimental

3,5-Dibromo-2-hydroxybenzaldehyde (1.0 mmol, 280.0 mg), *N*-cyclohexylpropane-1,3-diamine (1.0 mmol, 156.2 mg), and nickel nitrate hexahydrate (0.5 mmol, 145.4 mg) were dissolved in a methanol solution (50 ml). The mixture was stirred at room temperature for 30 min and filtered. After keeping the filtrate in air for 12 days, green block-shaped crystals were formed.

#### Refinement

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å,  $U_{iso} = 1.2U_{eq}$  (C) for aromatic 0.97 Å,  $U_{iso} = 1.2U_{eq}$  (C) for CH<sub>2</sub>, 0.96 Å,  $U_{iso} = 1.5U_{eq}$  (C) for CH<sub>3</sub>, 0.90 Å,  $U_{iso} = 1.2U_{eq}$  (N) for NH and 0.82 Å,  $U_{iso} = 1.5U_{eq}$  (O) for OH atoms.

#### **Figures**



Fig. 1. The structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Labelled atoms are related to unlabelled atoms by the symmetry operation -x + 2, -y + 1, -z.

#### Bis{2,4-dibromo-6-[3-(cyclohexylammonio)propyliminomethyl]phenolato- $\kappa^2 N$ ,O}bis(thiocyanato- $\kappa N$ )nickel(II) methanol disolvate

#### Crystal data

| [Ni(NCS)a(C1(HaaBraNaO)al·2CH4O      | 7 = 1                                     |
|--------------------------------------|-------------------------------------------|
| [10(1003)/(01611220121020)/2] 201140 | $\Sigma = 1$                              |
| $M_r = 1075.31$                      | $F_{000} = 542$                           |
| Triclinic, <i>P</i> T                | $D_{\rm x} = 1.621 {\rm Mg m}^{-3}$       |
| 11 11 1 1 D 1                        | Mo $K\alpha$ radiation                    |
| Hall symbol: -P 1                    | $\lambda = 0.71073 \text{ Å}$             |
| a = 9.3410 (19)  Å                   | Cell parameters from 1932 reflections     |
| b = 10.957 (2) Å                     | $\theta = 2.3 - 24.9^{\circ}$             |
| c = 12.210 (2) Å                     | $\mu = 4.21 \text{ mm}^{-1}$              |
| $\alpha = 108.28 \ (3)^{\circ}$      | T = 298 (2)  K                            |
| $\beta = 104.21 \ (3)^{\circ}$       | Block, green                              |
| $\gamma = 100.80 \ (3)^{\circ}$      | $0.27 \times 0.23 \times 0.22 \text{ mm}$ |
| $V = 1101.8 (4) \text{ Å}^3$         |                                           |

#### Data collection

| Bruker SMART 1000 CCD area-detector diffractometer             | 4504 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2992 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.033$                  |
| T = 298(2)  K                                                  | $\theta_{\text{max}} = 26.5^{\circ}$   |
| ω scans                                                        | $\theta_{\min} = 1.9^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -11 \rightarrow 11$               |
| $T_{\min} = 0.397, T_{\max} = 0.458$                           | $k = -13 \rightarrow 13$               |
| 8978 measured reflections                                      | $l = -15 \rightarrow 15$               |

#### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                     |
|--------------------------------------------------------|--------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                 |
| $R[F^2 > 2\sigma(F^2)] = 0.045$                        | H-atom parameters constrained                                            |
| $wR(F^2) = 0.107$                                      | $w = 1/[\sigma^2(F_o^2) + (0.048P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.01                                        | $(\Delta/\sigma)_{\rm max} < 0.001$                                      |
| 4504 reflections                                       | $\Delta \rho_{max} = 0.60 \text{ e } \text{\AA}^{-3}$                    |
| 243 parameters                                         | $\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$                   |
| Primary atom site location: structure invariant direct |                                                                          |

Primary atom site location: structure-invariant direct Extinction correction: none methods

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | у            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|--------------|---------------------------|
| Ni1  | 1.0000       | 0.5000       | 0.0000       | 0.02932 (18)              |
| Br1  | 1.51132 (5)  | 0.62678 (5)  | 0.30412 (4)  | 0.05920 (18)              |
| Br2  | 1.33026 (6)  | 0.98998 (5)  | 0.64540 (4)  | 0.06664 (19)              |
| S1   | 0.67133 (19) | 0.12546 (13) | 0.02759 (16) | 0.0838 (5)                |
| 01   | 1.1701 (3)   | 0.5367 (2)   | 0.1599 (2)   | 0.0343 (6)                |
| O2   | 0.4154 (4)   | 0.6690 (5)   | 0.7706 (4)   | 0.0961 (14)               |
| H2   | 0.3910       | 0.7163       | 0.8256       | 0.144*                    |
| N1   | 0.8749 (3)   | 0.5875 (3)   | 0.1069 (3)   | 0.0308 (7)                |
| N2   | 0.7392 (4)   | 0.6953 (3)   | -0.1414 (3)  | 0.0370 (8)                |
| H2A  | 0.6383       | 0.6774       | -0.1815      | 0.044*                    |
| H2B  | 0.7599       | 0.6164       | -0.1507      | 0.044*                    |
| N3   | 0.8862 (4)   | 0.3162 (3)   | -0.0011 (3)  | 0.0406 (8)                |
| C1   | 1.0902 (5)   | 0.6977 (4)   | 0.2983 (3)   | 0.0346 (9)                |
| C2   | 1.2019 (4)   | 0.6386 (4)   | 0.2618 (3)   | 0.0336 (9)                |
| C3   | 1.3531 (5)   | 0.6978 (4)   | 0.3463 (4)   | 0.0369 (10)               |
| C4   | 1.3914 (5)   | 0.8006 (4)   | 0.4567 (3)   | 0.0428 (11)               |
| H4   | 1.4930       | 0.8359       | 0.5086       | 0.051*                    |
| C5   | 1.2775 (5)   | 0.8511 (4)   | 0.4899 (3)   | 0.0402 (10)               |
| C6   | 1.1291 (5)   | 0.8001 (4)   | 0.4125 (3)   | 0.0391 (10)               |
| H6   | 1.0527       | 0.8340       | 0.4362       | 0.047*                    |
| C7   | 0.9310 (5)   | 0.6557 (4)   | 0.2211 (4)   | 0.0357 (9)                |
| H7   | 0.8612       | 0.6817       | 0.2597       | 0.043*                    |
| C8   | 0.7085 (4)   | 0.5674 (4)   | 0.0512 (4)   | 0.0361 (9)                |
| H8A  | 0.6524       | 0.5346       | 0.0983       | 0.043*                    |
| H8B  | 0.6724       | 0.4997       | -0.0308      | 0.043*                    |
| C9   | 0.6743 (5)   | 0.6966 (4)   | 0.0459 (4)   | 0.0430 (10)               |
| H9A  | 0.5664       | 0.6750       | -0.0007      | 0.052*                    |
| H9B  | 0.6897       | 0.7563       | 0.1283       | 0.052*                    |
| C10  | 0.7701 (5)   | 0.7713 (4)   | -0.0092 (4)  | 0.0411 (10)               |
| H10A | 0.7485       | 0.8567       | 0.0012       | 0.049*                    |
| H10B | 0.8784       | 0.7896       | 0.0344       | 0.049*                    |
| C11  | 0.8317 (5)   | 0.7682 (4)   | -0.1982 (4)  | 0.0402 (10)               |
| H11  | 0.9403       | 0.7983       | -0.1472      | 0.048*                    |
|      |              |              |              |                           |

| C12  | 0.7835 (9) | 0.8882 (6) | -0.2053 (5) | 0.106 (3)   |
|------|------------|------------|-------------|-------------|
| H12A | 0.7954     | 0.9484     | -0.1240     | 0.127*      |
| H12B | 0.6755     | 0.8605     | -0.2540     | 0.127*      |
| C13  | 0.8795 (9) | 0.9614 (5) | -0.2620 (5) | 0.105 (3)   |
| H13A | 0.8441     | 1.0377     | -0.2675     | 0.125*      |
| H13B | 0.9864     | 0.9949     | -0.2099     | 0.125*      |
| C14  | 0.8688 (6) | 0.8722 (5) | -0.3856 (4) | 0.0546 (12) |
| H14A | 0.9368     | 0.9200     | -0.4168     | 0.066*      |
| H14B | 0.7642     | 0.8467     | -0.4406     | 0.066*      |
| C15  | 0.9127 (8) | 0.7495 (5) | -0.3811 (5) | 0.0849 (19) |
| H15A | 1.0213     | 0.7746     | -0.3347     | 0.102*      |
| H15B | 0.8973     | 0.6894     | -0.4633     | 0.102*      |
| C16  | 0.8180 (7) | 0.6767 (5) | -0.3229 (5) | 0.0758 (17) |
| H16A | 0.7106     | 0.6432     | -0.3740     | 0.091*      |
| H16B | 0.8535     | 0.6005     | -0.3174     | 0.091*      |
| C17  | 0.7955 (5) | 0.2382 (4) | 0.0099 (4)  | 0.0410 (10) |
| C18  | 0.2958 (8) | 0.6214 (7) | 0.6636 (6)  | 0.101 (2)   |
| H18A | 0.2636     | 0.6950     | 0.6497      | 0.151*      |
| H18B | 0.2112     | 0.5605     | 0.6683      | 0.151*      |
| H18C | 0.3286     | 0.5753     | 0.5976      | 0.151*      |
|      |            |            |             |             |

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| Ni1 | 0.0307 (4)  | 0.0273 (4)  | 0.0304 (4)  | 0.0080 (3)  | 0.0130 (3)  | 0.0094 (3)  |
| Br1 | 0.0371 (3)  | 0.0546 (3)  | 0.0626 (3)  | 0.0149 (2)  | 0.0096 (2)  | -0.0039 (2) |
| Br2 | 0.0754 (4)  | 0.0546 (3)  | 0.0433 (3)  | 0.0061 (3)  | 0.0193 (3)  | -0.0090 (2) |
| S1  | 0.0967 (11) | 0.0381 (8)  | 0.1335 (14) | 0.0095 (7)  | 0.0855 (11) | 0.0235 (8)  |
| 01  | 0.0354 (15) | 0.0317 (15) | 0.0306 (15) | 0.0110 (12) | 0.0085 (12) | 0.0059 (12) |
| O2  | 0.073 (3)   | 0.122 (4)   | 0.073 (3)   | 0.060 (3)   | 0.012 (2)   | 0.002 (3)   |
| N1  | 0.0344 (18) | 0.0296 (18) | 0.0328 (18) | 0.0106 (14) | 0.0163 (15) | 0.0124 (15) |
| N2  | 0.042 (2)   | 0.0313 (18) | 0.0363 (19) | 0.0127 (16) | 0.0131 (16) | 0.0095 (16) |
| N3  | 0.040 (2)   | 0.033 (2)   | 0.049 (2)   | 0.0071 (17) | 0.0175 (17) | 0.0158 (17) |
| C1  | 0.043 (2)   | 0.032 (2)   | 0.031 (2)   | 0.0103 (19) | 0.0155 (19) | 0.0130 (18) |
| C2  | 0.038 (2)   | 0.030 (2)   | 0.034 (2)   | 0.0088 (18) | 0.0141 (18) | 0.0133 (19) |
| C3  | 0.034 (2)   | 0.033 (2)   | 0.044 (2)   | 0.0106 (18) | 0.0155 (19) | 0.012 (2)   |
| C4  | 0.041 (3)   | 0.035 (2)   | 0.035 (2)   | 0.006 (2)   | 0.003 (2)   | 0.002 (2)   |
| C5  | 0.053 (3)   | 0.033 (2)   | 0.028 (2)   | 0.006 (2)   | 0.014 (2)   | 0.0052 (19) |
| C6  | 0.049 (3)   | 0.040 (2)   | 0.033 (2)   | 0.016 (2)   | 0.023 (2)   | 0.0115 (19) |
| C7  | 0.039 (2)   | 0.034 (2)   | 0.040 (2)   | 0.0135 (19) | 0.0224 (19) | 0.013 (2)   |
| C8  | 0.034 (2)   | 0.042 (2)   | 0.036 (2)   | 0.0140 (19) | 0.0178 (18) | 0.0133 (19) |
| C9  | 0.042 (2)   | 0.050 (3)   | 0.042 (2)   | 0.023 (2)   | 0.016 (2)   | 0.016 (2)   |
| C10 | 0.054 (3)   | 0.032 (2)   | 0.041 (2)   | 0.016 (2)   | 0.019 (2)   | 0.014 (2)   |
| C11 | 0.043 (2)   | 0.037 (2)   | 0.037 (2)   | 0.009 (2)   | 0.010 (2)   | 0.013 (2)   |
| C12 | 0.228 (8)   | 0.070 (4)   | 0.096 (5)   | 0.090 (5)   | 0.119 (5)   | 0.054 (4)   |
| C13 | 0.216 (8)   | 0.050 (3)   | 0.082 (4)   | 0.043 (4)   | 0.086 (5)   | 0.039 (3)   |
| C14 | 0.061 (3)   | 0.062 (3)   | 0.052 (3)   | 0.019 (3)   | 0.025 (2)   | 0.030 (3)   |
| C15 | 0.131 (6)   | 0.064 (4)   | 0.101 (5)   | 0.040 (4)   | 0.081 (4)   | 0.045 (4)   |

| C16                    | 0.126 (5)        | 0.047 (3)            | 0.085 (4) | 0.033 (3)      | 0.076 (4) | 0.028 (3) |
|------------------------|------------------|----------------------|-----------|----------------|-----------|-----------|
| C17                    | 0.042 (3)        | 0.035 (2)            | 0.048 (3) | 0.016 (2)      | 0.021 (2) | 0.011 (2) |
| C18                    | 0.105 (5)        | 0.101 (5)            | 0.097 (5) | 0.054 (4)      | 0.020 (4) | 0.034 (4) |
|                        |                  |                      |           |                |           |           |
| Geometric pe           | arameters (Å, °) |                      |           |                |           |           |
| Ni1—O1                 |                  | 2.060 (3)            | C8—       | -C9            |           | 1.525 (6) |
| Ni1—O1 <sup>i</sup>    |                  | 2.060 (3)            | C8-       | -H8A           |           | 0.9700    |
| Ni1—N3 <sup>i</sup>    |                  | 2.088 (4)            | C8—       | -H8B           |           | 0.9700    |
| Ni1—N3                 |                  | 2.088 (4)            | С9—       | C10            |           | 1.513 (6) |
| Ni1—N1                 |                  | 2.090 (3)            | С9—       | -H9A           |           | 0.9700    |
| Ni1—N1 <sup>i</sup>    |                  | 2.090 (3)            | С9—       | -H9B           |           | 0.9700    |
| Br1—C3                 |                  | 1.900 (4)            | C10-      | —H10A          |           | 0.9700    |
| Br2—C5                 |                  | 1.900 (4)            | C10-      | —H10B          |           | 0.9700    |
| S1-C17                 |                  | 1.635 (5)            | C11-      | —C12           |           | 1.488 (6) |
| O1—C2                  |                  | 1.306 (4)            | C11-      | C16            |           | 1.496 (6) |
| O2—C18                 |                  | 1.365 (6)            | C11-      | —H11           |           | 0.9800    |
| O2—H2                  |                  | 0.8200               | C12-      | —C13           |           | 1.520 (8) |
| N1—C7                  |                  | 1.272 (5)            | C12-      | —H12A          |           | 0.9700    |
| N1-C8                  |                  | 1.479 (5)            | C12-      | —H12B          |           | 0.9700    |
| N2—C10                 |                  | 1.490 (5)            | C13-      | —C14           |           | 1.486 (6) |
| N2—C11                 |                  | 1.500 (5)            | C13-      | —H13A          |           | 0.9700    |
| N2—H2A                 |                  | 0.9000               | C13-      | —H13B          |           | 0.9700    |
| N2—H2B                 |                  | 0.9000               | C14-      |                |           | 1.490 (7) |
| N3-C1/                 |                  | 1.150 (5)            | C14-      | —H14A<br>1114D |           | 0.9700    |
| C1 = C0                |                  | 1.398 (3)            | C14-      | —П14D          |           | 0.9700    |
| C1 - C2                |                  | 1.410(3)<br>1.447(5) | C15-      |                |           | 0.9700    |
| $C_1 = C_3$            |                  | 1.447(5)             | C15-      |                |           | 0.9700    |
| $C_2 = C_3$            |                  | 1 369 (5)            | C16       |                |           | 0.9700    |
| C4—C5                  |                  | 1.376 (5)            | C16       | -H16B          |           | 0.9700    |
| C4—H4                  |                  | 0.9300               | C18-      | —H18A          |           | 0.9600    |
| C5—C6                  |                  | 1.364 (6)            | C18-      | —H18B          |           | 0.9600    |
| С6—Н6                  |                  | 0.9300               | C18-      | —H18C          |           | 0.9600    |
| С7—Н7                  |                  | 0.9300               |           |                |           |           |
| 01—Ni1—0               | 1 <sup>i</sup>   | 180.00 (14)          | C10-      | —С9—Н9А        |           | 108.3     |
| 01—Ni1—Ni              | 3 <sup>i</sup>   | 88.72 (12)           | C8—       | -С9—Н9А        |           | 108.3     |
| O1 <sup>i</sup> —Ni1—N | 13 <sup>i</sup>  | 91.28 (12)           | C10-      | —С9—Н9В        |           | 108.3     |
| 01—Ni1—Ni              | 3                | 91.28 (12)           | C8—       | -С9—Н9В        |           | 108.3     |
| Ol <sup>i</sup> —Nil—N | 13               | 88.72 (12)           | H9A       | —С9—Н9В        |           | 107.4     |
| N3 <sup>i</sup> —Ni1—N | 13               | 180.00 (18)          | N2-       | -С10-С9        |           | 112.9 (3) |
| O1—Ni1—N               | 1                | 87.62 (11)           | N2-       | C10H10A        |           | 109.0     |
| O1 <sup>i</sup> —Ni1—N | [1               | 92.38 (11)           | С9—       | -C10—H10A      |           | 109.0     |
| N3 <sup>i</sup> —Ni1—N | 11               | 92.76 (13)           | N2-       |                |           | 109.0     |
| N3—Ni1—N               | 1                | 87.24 (13)           | C9–       | -C10-H10B      |           | 109.0     |
| 01—Ni1—N               | 1 <sup>i</sup>   | 92.38 (11)           | H10.      | A—C10—H10B     |           | 107.8     |
|                        |                  | · · ·                |           |                |           |           |

| O1 <sup>i</sup> —Ni1—N1 <sup>i</sup>         | 87.62 (11)  | C12—C11—C16   | 109.7 (4) |
|----------------------------------------------|-------------|---------------|-----------|
| N3 <sup>i</sup> —Ni1—N1 <sup>i</sup>         | 87.24 (13)  | C12—C11—N2    | 111.7 (4) |
| N3—Ni1—N1 <sup>i</sup>                       | 92.76 (13)  | C16—C11—N2    | 110.6 (3) |
| $N1 - Ni1 - N1^{i}$                          | 180.00 (15) | C12—C11—H11   | 108.2     |
| C2—O1—Ni1                                    | 124.6 (2)   | C16—C11—H11   | 108.2     |
| С18—О2—Н2                                    | 109.5       | N2—C11—H11    | 108.2     |
| C7—N1—C8                                     | 115.6 (3)   | C11—C12—C13   | 110.9 (5) |
| C7—N1—Ni1                                    | 124.4 (3)   | C11—C12—H12A  | 109.5     |
| C8—N1—Ni1                                    | 120.0 (2)   | C13—C12—H12A  | 109.5     |
| C10—N2—C11                                   | 113.7 (3)   | C11—C12—H12B  | 109.5     |
| C10—N2—H2A                                   | 108.8       | C13—C12—H12B  | 109.5     |
| C11—N2—H2A                                   | 108.8       | H12A—C12—H12B | 108.0     |
| C10—N2—H2B                                   | 108.8       | C14—C13—C12   | 111.7 (5) |
| C11—N2—H2B                                   | 108.8       | C14—C13—H13A  | 109.3     |
| H2A—N2—H2B                                   | 107.7       | С12—С13—Н13А  | 109.3     |
| C17—N3—Ni1                                   | 159.1 (3)   | C14—C13—H13B  | 109.3     |
| C6—C1—C2                                     | 121.1 (4)   | C12—C13—H13B  | 109.3     |
| C6—C1—C7                                     | 116.5 (4)   | H13A—C13—H13B | 107.9     |
| C2—C1—C7                                     | 122.5 (4)   | C13—C14—C15   | 110.4 (4) |
| O1—C2—C3                                     | 121.8 (4)   | C13—C14—H14A  | 109.6     |
| O1—C2—C1                                     | 123.8 (4)   | C15—C14—H14A  | 109.6     |
| C3—C2—C1                                     | 114.4 (3)   | C13—C14—H14B  | 109.6     |
| C4—C3—C2                                     | 124.2 (4)   | C15—C14—H14B  | 109.6     |
| C4—C3—Br1                                    | 118.4 (3)   | H14A—C14—H14B | 108.1     |
| C2—C3—Br1                                    | 117.4 (3)   | C14—C15—C16   | 111.7 (4) |
| C3—C4—C5                                     | 119.1 (4)   | C14—C15—H15A  | 109.3     |
| С3—С4—Н4                                     | 120.5       | C16—C15—H15A  | 109.3     |
| C5—C4—H4                                     | 120.5       | C14—C15—H15B  | 109.3     |
| C6—C5—C4                                     | 120.1 (4)   | C16—C15—H15B  | 109.3     |
| C6—C5—Br2                                    | 121.1 (3)   | H15A—C15—H15B | 107.9     |
| C4—C5—Br2                                    | 118.9 (3)   | C11—C16—C15   | 111.1 (4) |
| C5—C6—C1                                     | 121.1 (4)   | C11—C16—H16A  | 109.4     |
| С5—С6—Н6                                     | 119.5       | C15-C16-H16A  | 109.4     |
| C1—C6—H6                                     | 119.5       | C11—C16—H16B  | 109.4     |
| N1—C7—C1                                     | 127.9 (4)   | C15-C16-H16B  | 109.4     |
| N1—C7—H7                                     | 116.1       | H16A—C16—H16B | 108.0     |
| С1—С7—Н7                                     | 116.1       | N3—C17—S1     | 178.0 (4) |
| N1—C8—C9                                     | 112.1 (3)   | O2-C18-H18A   | 109.5     |
| N1—C8—H8A                                    | 109.2       | O2—C18—H18B   | 109.5     |
| С9—С8—Н8А                                    | 109.2       | H18A—C18—H18B | 109.5     |
| N1—C8—H8B                                    | 109.2       | O2—C18—H18C   | 109.5     |
| С9—С8—Н8В                                    | 109.2       | H18A—C18—H18C | 109.5     |
| H8A—C8—H8B                                   | 107.9       | H18B—C18—H18C | 109.5     |
| С10—С9—С8                                    | 115.8 (3)   |               |           |
| Symmetry codes: (i) $-x+2$ , $-y+1$ , $-z$ . |             |               |           |

